

Solar Process Heat in Breweries

Franz Mauthner Christoph Brunner Matthäus Hubmann Christian Fink

AEE – Institute for Sustainable Technologies (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 AUSTRIA

Outline

Introduction "Solar thermal heat for industrial processes"

- Motivation and potentials
- Assessment methodology for solar thermal integration
- Classification of integration concepts
- Process heat collectors

Concepts and experiences with installed systems

- Introduction to the project "SolarBrew"
- State of the project and introduction to the three demonstration sites
 - Brewery Goess, Austria (Mashing)
 - Brewery Valencia, Spain (Pasteurizing)
 - Malting Plant Vialonga, Portugal (Drying)

PROJECT CONSORTIUM

- AEE INTEC (coordinator)
- HEINEKEN Supply Chain B.V.
- GEA Brewery Systems GmbH
 - process engineering
- Sunmark A/S
 - solar engineering

Solar Brew: Solar Brewing the Future EU FP7 (2012 – 2015) Projekt Nr. 295660

-

SolarBrew

Introduction to the project SolarBrew

- Demonstration of the technical and economical feasibility of large scale solar process heat applications ≥ 1 MWth,p in the brewing industry
 - Development of concepts for a solar heat integration on process level at temperatures ≤ 80°C
 - Design and construction of three demonstrators with a total capacity of 5.0 MWth,p
 - Development of a holistic "Green Brewery Sector Concept" combining energy efficiency and renewable heat integration

SOLTRAIN training course , Feb. 03-04 2014, Pretoria, South Africa

SolarBrew

Potential for solar heat in the brewing industry

 All thermally driven processes in breweries and malting plants require heat at a temperature on process level of between 25 and 105°C

BREWERY GOESS

- Solar assisted mashing process
- 1.500m² ground mounted flat plate collector field
- 200m³ pressurized hot water energy storage tank
- Commissioned: June 2013

4.6 million pints of beer per year brewed with the power from the sun*

* assuming 60 MJ thermal energy consumption per hl of beer in the brewery Goess

BREWERY GOESS

AEE INTEC

- Schematic diagram of the solar primary and secondary loop

BREWERY GOESS

AEE INTEC

- Collector field hydraulics

BREWERY GOESS

- Stagnation prevention

AEE INTEC

- Stagnation prevention is done by means of 1) night cooling and 2) active water/water HX
- A pressure controlled safety valve opens if all other proceeding measures fail (due to malfunction, power outages, etc...).

BREWERY GOESS

AEE INTEC

- Construction of the 200m³ solar energy storage

BREWERY GOESS

AEE INTER

- Construction of the 1,500m² solar thermal collector field

BREWERY GOESS

AEE INTER

- Construction of the 1,500m² solar thermal collector field

BREWERY GOESS

AEE INTEC

- Solar heat integration to mash tuns
- Retrofit of two existing mash tuns with heat exchanger templates

BREWERY GOESS

AEE INTEC

- Construction of the heat exchanger templates

- Solar assisted pasteurization of beer
- 1.620m² ground mounted flat plate collector field
- 350m³ atmospheric hot water energy storage tank
- Construction end: Spring 2014

9.6 million pints of beer per year brewed with the power from the sun*

 \ast assuming 70 MJ thermal energy consumption per hl of beer in the brewery Valencia

BREWERY VALENCIA

AEE INTEC

- Solar heat integration to a tunnel pasteurizer

tunnel pasteurizer

BREWERY VALENCIA

 Retrofit of a steam based supply system with a serial connected hot water plate heat exchanger

www.aee-intec.at AEE - Institut für Nachhaltige Technologien

SOLTRAIN training course , Feb. 03-04 2014, Pretoria, South Africa

State of the project

MALTING PLANT VIALONGA

- Solar assisted drying of green malt
- 4.725m² ground mounted flat plate collector field
- 400m³ atmospheric hot water energy storage tank
- Construction end: Spring 2014

3.6 million tons malt per

year dried with the power from the sun*

* assuming 3.1 MJ thermal energy consumption per ton of malt in Vialonga
** assuming 18 kg malt per hl of beer

MALTING PLANT VIALONGA

AEE INTEC

<u>Solar heat integration</u>
 <u>to drying kiln</u>

MALTING PLANT VIALONGA

AEE INTEC

- <u>Solar heat integration</u>
 <u>to drying kiln</u>
- Installation of a new water/air heat exchanger for the exergetically optimized cascade supply of heat
- Heating-up drying air from 35–55°C

www.aee-intec.at AEE - Institut für Nachhaltige Technologien

SOLTRAIN training course , Feb. 03-04 2014, Pretoria, South Africa

State of the project

MALTING PLANT VIALONGA

HX CHP

G

Overview over the three demonstrators

	SITE & LOCATION	Collector field size ¹	Thermal peak capacity	Solar energy storage volume	Process supplied	Expected solar yield ²	Solar fraction ^{2,3}	Irradiation onto horizontal plane
		[m²]	[MW _{p,th}]	[m³]	process temperature [°C]	[kWh/(m²⋅a)]	[%]	[kWh/(m²·a)]
Jösser	Brewery Goess, AT	1,375	1.0	200 (pressurized tank)	mashing	280	~ 30%	1.070
					58-78°C			
Cruzcampo	Brewery Valencia, ES	1,485	1.0	350 (atmospheric tank)	pasteurization of beer	630	~ 45%	1.610
					63-65°C			
SAGRES CERVEJA	Malting plant Vialonga,	4,331	3.0	400 (atmospheric tank)	drying of green malt	720	~ 20%	1.690
	PT				35-55°C			
	Total	7,191	5.0					

¹Reference: aperture area

²Simulation results based on representative (measured) load profiles

³ Solar fraction with regard to the respective process supplied with solar thermal heat

Conclusions

- There is huge (technical) potential for solar process heat applications in Europe
- To obtain (exergetically) best results measures to increase energy efficiency have to be investigated prior to the integration of renewable energy supply technologies
- Detail engineering and construction of solar process heat applications demand both process engineering and solar engineering expertise – **a holistic methodological approach is needed**

This course aims to follow such an approach

Thank you for your attention!

Franz Mauthner

AEE – Institut für Nachhaltige Technologien (AEE INTEC) A-8200 Gleisdorf, Feldgasse 19 fimalithner@aee.at AUSTRIA

